Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2303679121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38478687

RESUMO

There are many fields where it is of interest to measure the elastic moduli of tiny fragile fibers, such as filamentous bacteria, actin filaments, DNA, carbon nanotubes, and functional microfibers. The elastic modulus is typically deduced from a sophisticated tensile test under a microscope, but the throughput is low and limited by the time-consuming and skill-intensive sample loading/unloading. Here, we demonstrate a simple microfluidic method enabling the high-throughput measurement of the elastic moduli of microfibers by rope coiling using a localized compression, where sample loading/unloading are not needed between consecutive measurements. The rope coiling phenomenon occurs spontaneously when a microfiber flows from a small channel into a wide channel. The elastic modulus is determined by measuring either the buckling length or the coiling radius. The throughput of this method, currently 3,300 fibers per hour, is a thousand times higher than that of a tensile tester. We demonstrate the feasibility of the method by testing a nonuniform fiber with axially varying elastic modulus. We also demonstrate its capability for in situ inline measurement in a microfluidic production line. We envisage that high-throughput measurements may facilitate potential applications such as screening or sorting by mechanical properties and real-time control during production of microfibers.

2.
Soft Matter ; 20(9): 1966-1977, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38334990

RESUMO

Plant-based foods are gaining popularity as alternatives to meat and dairy products due to sustainability and health concerns. As a consequence, there is a renewed interest in the phase behaviour of plant proteins and of mixtures of plant proteins and polysaccharides, in particular in the cases where coacervation is found to occur, i.e., liquid-liquid phase separation (LLPS) into two phases, one of which is rich in biopolymers and one of which is poor in biopolymer. Here we review recent research into both simple and complex coacervation in systems involving plant proteins, and their applications in food- as well as other technologies, such as microencapsulation, microgel production, adhesives, biopolymer films, and more.


Assuntos
Proteínas de Plantas , Polissacarídeos , Biopolímeros
3.
Nat Commun ; 15(1): 1437, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365901

RESUMO

In vascular networks, the transport across different vessel walls regulates chemical compositions in blood over space and time. Replicating such trans-wall transport with spatial heterogeneity can empower synthetic fluidic systems to program fluid compositions spatiotemporally. However, it remains challenging as existing synthetic channel walls are typically impermeable or composed of homogeneous materials without functional heterogeneity. This work presents a vascular network-inspired fluidic system (VasFluidics), which is functionalizable for spatially different trans-wall transport. Facilitated by embedded three-dimensional (3D) printing, elastic, ultrathin, and semipermeable walls self-assemble electrostatically. Physicochemical reactions between fluids and walls are localized to vary the trans-wall molecules among separate regions, for instance, by confining solutions or locally immobilizing enzymes on the outside of channels. Therefore, fluid compositions can be regulated spatiotemporally, for example, to mimic blood changes during glucose absorption and metabolism. Our VasFluidics expands opportunities to replicate biofluid processing in nature, providing an alternative to traditional fluidics.


Assuntos
Impressão Tridimensional , Fezes
5.
Lab Chip ; 24(5): 1135-1153, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38165829

RESUMO

Over the past two decades, advances in droplet-based microfluidics have facilitated new approaches to process and analyze samples with unprecedented levels of precision and throughput. A wide variety of applications has been inspired across multiple disciplines ranging from materials science to biology. Understanding the dynamics of droplets enables optimization of microfluidic operations and design of new techniques tailored to emerging demands. In this review, we discuss the underlying physics behind high-throughput generation and manipulation of droplets. We also summarize the applications in droplet-derived materials and droplet-based lab-on-a-chip biotechnology. In addition, we offer perspectives on future directions to realize wider use of droplet microfluidics in industrial production and biomedical analyses.

6.
Nat Biomed Eng ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996617

RESUMO

Mapping mutations and discovering cellular determinants that cause the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to induce infected cells to form syncytia would facilitate the development of strategies for blocking the formation of such cell-cell fusion. Here we describe high-throughput screening methods based on droplet microfluidics and the size-exclusion selection of syncytia, coupled with large-scale mutagenesis and genome-wide knockout screening via clustered regularly interspaced short palindromic repeats (CRISPR), for the large-scale identification of determinants of cell-cell fusion. We used the methods to perform deep mutational scans in spike-presenting cells to pinpoint mutable syncytium-enhancing substitutions in two regions of the spike protein (the fusion peptide proximal region and the furin-cleavage site). We also used a genome-wide CRISPR screen in cells expressing the receptor angiotensin-converting enzyme 2 to identify inhibitors of clathrin-mediated endocytosis that impede syncytium formation, which we validated in hamsters infected with SARS-CoV-2. Finding genetic and cellular determinants of the formation of syncytia may reveal insights into the physiological and pathological consequences of cell-cell fusion.

7.
Nano Lett ; 23(21): 9953-9962, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37871156

RESUMO

Information encryption strategies have become increasingly essential. Most of the fluorescent security patterns have been made with a lateral configuration of red, green, and blue subpixels, limiting the pixel density and security level. Here we report vertically stacked, luminescent heterojunction micropixels that construct high-resolution, multiplexed anticounterfeiting labels. This is enabled by meniscus-guided three-dimensional (3D) microprinting of red, green, and blue (RGB) dye-doped materials. High-precision vertical stacking of subpixel segments achieves full-color pixels without sacrificing lateral resolution, achieving a small pixel size of ∼µm and a high density of over 13,000 pixels per inch. Furthermore, a full-scale color synthesis for individual pixels is developed by modulating the lengths of the RGB subpixels. Taking advantage of these unique 3D structural designs, trichannel multiplexed anticounterfeiting Quick Response codes are successfully demonstrated. We expect that this work will advance data encryption technology while also providing a versatile manufacturing platform for diverse 3D display devices.

8.
Angew Chem Int Ed Engl ; 62(45): e202313096, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37728515

RESUMO

In eukaryotic cells, the membraneless organelles (MLOs) formed via liquid-liquid phase separation (LLPS) are found to interact intimately with membranous organelles (MOs). One major mode is the clustering of MOs by MLOs, such as the formation of clusters of synaptic vesicles at nerve terminals mediated by the synapsin-rich MLOs. Aqueous droplets, including complex coacervates and aqueous two-phase systems, have been plausible MLO-mimics to emulate or elucidate biological processes. However, neither of them can cluster lipid vesicles (LVs) like MLOs. In this work, we develop a synthetic droplet assembled from a combination of two different interactions underlying the formation of these two droplets, namely, associative and segregative interactions, which we call segregative-associative (SA) droplets. The SA droplets cluster and disperse LVs recapitulating the key functional features of synapsin condensates, which can be attributed to the weak electrostatic interaction environment provided by SA droplets. This work suggests LLPS with combined segregative and associative interactions as a possible route for synaptic clustering of lipid vesicles and highlights SA droplets as plausible MLO-mimics and models for studying and mimicking related cellular dynamics.


Assuntos
Organelas , Sinapsinas , Células Eucarióticas , Lipídeos
9.
ACS Nano ; 17(12): 11645-11654, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37307592

RESUMO

Self-assembly of colloidal nanoparticles has generated tremendous interest due to its widespread applications in structural colorations, sensors, and optoelectronics. Despite numerous strategies being developed to fabricate sophisticated structures, the heterogeneous self-assembly of a single type of nanoparticle in one step remains challenging. Here, facilitated by spatial confinement induced by a skin layer in a drying droplet, we achieve the heterogeneous self-assembly of a single type of nanoparticle by quickly evaporating a colloid-poly (ethylene glycol) (PEG) droplet. During the drying process, a skin layer forms at the droplet surface. The resultant spatial confinement assembles nanoparticles into face-centered-cubic (FCC) lattices with (111) and (100) plane orientations, generating binary bandgaps and two structural colors. The self-assembly of nanoparticles can be regulated by varying the PEG concentration so that FCC lattices with homo- or heterogeneous orientation planes can be prepared on demand. Besides, the approach is applicable for diverse droplet shapes, various substrates, and different nanoparticles. The one-pot general strategy breaks the requirements for multiple types of building blocks and predesigned substrates, extending the fundamental understanding underlying colloidal self-assembly.

10.
Soft Matter ; 19(20): 3551-3561, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37144458

RESUMO

Liquid-liquid phase separation is a rich and dynamic process, which recently has gained new interest, especially in biology and for material synthesis. In this work, we experimentally show that co-flow of a nonequilibrated aqueous two-phase system within a planar flow-focusing microfluidic device results in a three-dimensional flow, as the two nonequilibrated solutions move downstream along the length of the microchannel. After the system reaches steady-state, invasion fronts from the outer stream are formed along the top and bottom walls of the microfluidic device. The invasion fronts advance towards the center of the channel, until they merge. We first show by tuning the concentration of polymer species within the system that the formation of these fronts is due to liquid-liquid phase separation. Moreover, the rate of invasion from the outer stream increases with increasing polymer concentrations in the streams. We hypothesize the invasion front formation and growth is driven by Marangoni flow induced by the polymer concentration gradient along the width of the channel, as the system is undergoing phase separation. In addition, we show how at various downstream positions the system reaches its steady-state configuration once the two fluid streams flow side-by-side in the channel.

11.
Nat Commun ; 14(1): 2793, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193701

RESUMO

Engineering heterogeneous hydrogels with distinct phases at various lengths, which resemble biological tissues with high complexity, remains challenging by existing fabricating techniques that require complicated procedures and are often only applicable at bulk scales. Here, inspired by ubiquitous phase separation phenomena in biology, we present a one-step fabrication method based on aqueous phase separation to construct two-aqueous-phase gels that comprise multiple phases with distinct physicochemical properties. The gels fabricated by this approach exhibit enhanced interfacial mechanics compared with their counterparts obtained from conventional layer-by-layer methods. Moreover, two-aqueous-phase gels with programmable structures and tunable physicochemical properties can be conveniently constructed by adjusting the polymer constituents, gelation conditions, and combining different fabrication techniques, such as 3D-printing. The versatility of our approach is demonstrated by mimicking the key features of several biological architectures at different lengths: macroscale muscle-tendon connections; mesoscale cell patterning; microscale molecular compartmentalization. The present work advances the fabrication approach for designing heterogeneous multifunctional materials for various technological and biomedical applications.

12.
ACS Nano ; 17(9): 8195-8203, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37093110

RESUMO

Intrinsically disordered peptides drive dynamic liquid-liquid phase separation (LLPS) in membraneless organelles and encode cellular functions in response to environmental stimuli. Engineering design on phase-separating peptides (PSPs) holds great promise for bioimaging, vaccine delivery, and disease theranostics. However, recombinant PSPs are devoid of robust luminogen or suitable cell permeability required for intracellular applications. Here, we synthesize a peptide-based RNA sensor by covalently connecting tetraphenylethylene (TPE), an aggregation-induced emission luminogen (AIEgens), to tandem peptide repeats of (RRASL)n (n = 1, 2, 3). Interestingly, the conjugation of TPE luminogen promotes liquid-liquid phase separation of the peptide repeats, and the minimum coacervation concentration (MCC) of TPE-(RRASL)n is decreased by an order of magnitude, compared to that of the untagged, TPE-free counterparts. Moreover, the luminescence of TPE-(RRASL)n is enhanced by up to 700-fold with increasing RNA concentration, which is attributed to the constricted rotation of the TPE moiety as a result of peptide/RNA coacervates within the droplet phase. Besides, at concentrations above MCC, TPE-(RRASL)n can efficiently penetrate through human gallbladder carcinoma cells (SGC-996), translocate into the cell nucleus, and colocalize with intracellular RNA. These observations suggest that AIEgen-conjugated PSPs can be used as droplet-based biosensors for intracellular RNA imaging through a regime of coacervation-induced emission.


Assuntos
Peptídeos , RNA , Humanos , Luminescência
13.
Microsyst Nanoeng ; 9: 24, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910256

RESUMO

Droplet merging serves as a powerful tool to add reagents to moving droplets for biological and chemical reactions. However, unsynchronized droplet pairing impedes high-efficiency merging. Here, we develop a microfluidic design for the self-synchronization of reinjected droplets. A periodic increase in the hydrodynamic resistance caused by droplet blocking a T-junction enables automatic pairing of droplets. After inducing spacing, the paired droplets merge downstream under an electric field. The blockage-based design can achieve a 100% synchronization efficiency even when the mismatch rate of droplet frequencies reaches 10%. Over 98% of the droplets can still be synchronized at nonuniform droplet sizes and fluctuating reinjection flow rates. Moreover, the droplet pairing ratio can be adjusted flexibly for on-demand sample addition. Using this system, we merge two groups of droplets encapsulating enzyme/substrate, demonstrating its capacity to conduct multi-step reactions. We also combine droplet sorting and merging to coencapsulate single cells and single beads, providing a basis for high-efficiency single-cell sequencing. We expect that this system can be integrated with other droplet manipulation systems for a broad range of chemical and biological applications.

14.
Br J Cancer ; 128(10): 1955-1963, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36927978

RESUMO

BACKGROUND: Chemoresistant cancer cells frequently exhibit a state of chronically activated endoplasmic reticulum (ER) stress. Engaged with ER stress, the unfolded protein response (UPR) is an adaptive reaction initiated by the accumulation of misfolded proteins. Protein disulfide isomerase (PDI) is a molecular chaperone known to be highly expressed in glioblastomas with acquired resistance to temozolomide (TMZ). We investigate whether therapeutic targeting of PDI provides a rationale to overcome chemoresistance. METHODS: The activity of PDI was suppressed in glioblastoma cells using a small molecule inhibitor CCF642. Either single or combination treatment with TMZ was used. We prepared nanoformulation of CCF642 loaded in albumin as a drug carrier for orthotopic tumour model. RESULTS: Inhibition of PDI significantly enhances the cytotoxic effect of TMZ on glioblastoma cells. More importantly, inhibition of PDI is able to sensitise glioblastoma cells that are initially resistant to TMZ treatment. Nanoformulation of CCF642 is well-tolerated and effective in suppressing tumour growth. It activates cell death-triggering UPR beyond repair and induces ER perturbations through the downregulation of PERK signalling. Combination treatment of TMZ with CCF642 significantly reduces tumour growth compared with either modality alone. CONCLUSION: Our study demonstrates modulation of ER stress by targeting PDI as a promising therapeutic rationale to overcome chemoresistance.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacologia , Glioblastoma/patologia , Apoptose , Resposta a Proteínas não Dobradas , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Albuminas , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Neoplasias Encefálicas/patologia
15.
Anal Chem ; 95(10): 4644-4652, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36855862

RESUMO

Most fluorescence-based bioanalytical applications need labeling of analytes. Conventional labeling requires washing to remove the excess fluorescent labels and reduce the noise signals. These pretreatments are labor intensive and need specialized equipment, hindering portable applications in resource-limited areas. Herein, we use the aqueous two-phase system (ATPS) to realize the partitioning-induced isolation of labeled analytes from background signals without extra processing steps. ATPS is formed by mixing two polymers at sufficiently high concentrations. ATPS-based isolation is driven by intrinsic affinity differences between analytes and excess labels. To demonstrate the partitioning-induced isolation and analysis, fluorescein isothiocyanate (FITC) is selected as the interfering fluorophore, and a monoclonal antibody (IgG) is used as the analyte. To optimize ATPS compositions, different molecular weights and mass fractions of polyethylene glycol (PEG) and dextran and different phosphate-buffered saline (PBS) concentrations are investigated. Various operational scales of our approach are demonstrated, suggesting its compatibility with various bioanalytical applications. In centimeter-scale ATPS, the optimized distribution ratios of IgG and FITC are 91.682 and 0.998 using PEG 6000 Da and dextran 10,000 Da in 10 mM PBS. In millimeter-scale ATPS, the analyte is enriched to 6.067 fold using 15 wt % PEG 35,000 Da and 5 wt % dextran 500,000 Da in 10 mM PBS. In microscale ATPS, analyte dilutions are isolated into picoliter droplets, and the measured fluorescence intensities linearly correlated with the analyte concentrations (R2 = 0.982).


Assuntos
Dextranos , Água , Fluoresceína-5-Isotiocianato , Polietilenoglicóis , Polímeros , Imunoglobulina G
16.
Nat Commun ; 14(1): 1242, 2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870987

RESUMO

When a suspension of spherical or near-spherical particles passes through a constriction the particle volume fraction either remains the same or decreases. In contrast to these particulate suspensions, here we observe that an entangled fiber suspension increases its volume fraction up to 14-fold after passing through a constriction. We attribute this response to the entanglements among the fibers that allows the network to move faster than the liquid. By changing the fiber geometry, we find that the entanglements originate from interlocking shapes or high fiber flexibility. A quantitative poroelastic model is used to explain the increase in velocity and extrudate volume fraction. These results provide a new strategy to use fiber volume fraction, flexibility, and shape to tune soft material properties, e.g., suspension concentration and porosity, during delivery, as occurs in healthcare, three-dimensional printing, and material repair.

17.
Adv Sci (Weinh) ; 10(11): e2300347, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36793100

RESUMO

Stimuli-responsive structural coloration allows the color change of soft substrates in response to environmental stimuli such as heat, humidity, and solvents. Such color-changing systems enable smart soft devices, such as the camouflageable skin of soft robots or chromatic sensors in wearable devices. However, individually and independently programmable stimuli-responsive color pixels remain significant challenges among the existing color-changing soft materials and devices, which are crucial for dynamic display. Inspired by the dual-color concavities on butterfly wings, a morphable concavity array to pixelate the structural color of two-dimensional photonic crystal elastomer and achieve individually and independently addressable stimuli-responsive color pixels is designed. The morphable concavity can convert its surface between concave and flat upon changes in the solvent and temperature, accompanied by angle-dependent color-shifting. Through multichannel microfluidics, the color of each concavity can be controllably switched. Based on the system, the dynamic display by forming reversibly editable letters and patterns for anti-counterfeiting and encryption are demonstrated. It is believed that the strategy of pixelating optical properties through locally altering surface topography can inspire the design of new transformable optical devices, such as artificial compound eyes or crystalline lenses for biomimetic and robotic applications.

18.
Adv Mater ; 35(19): e2211637, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36789886

RESUMO

Injectable hydrogels are valuable tools in tissue engineering and regenerative medicine due to their unique advantages of injectability with minimal invasiveness and usability for irregularly shaped sites. However, it remains challenging to achieve scalable manufacturing together with matching physicochemical properties and on-demand drug release for a high level of control over biophysical and biomedical cues to direct endogenous cells. Here, the use of an injectable fibro-gel is demonstrated, a water-filled network of entangled hydrogel microfibers, whose physicochemical properties and drug release profiles can be tailored to overcome these shortcomings. This fibro-gel exhibits favorable in vitro biocompatibility and the capability to aid vascularization. The potential use of the fibro-gel for advancing tissue regeneration is explored with a mice excision skin model. Preliminary in vivo tests indicate that the fibro-gel promotes wound healing and new healthy tissue regeneration at a faster rate than a commercial gel. Moreover, it is demonstrated that the release of distinct drugs at different rates can further accelerate wound healing with higher efficiency, by using a two-layer fibro-gel model. The combination of injectability and tailorable properties of this fibro-gel offers a promising approach in biomedical fields such as therapeutic delivery, medical dressings, and 3D tissue scaffolds for tissue engineering.


Assuntos
Hidrogéis , Cicatrização , Camundongos , Animais , Hidrogéis/química , Pele , Tecidos Suporte/química , Água
19.
J Am Chem Soc ; 145(4): 2375-2385, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689740

RESUMO

RNA encodes sequence- and structure-dependent interactions to modulate the assembly and properties of biomolecular condensates. RNA G-quadruplexes (rG4s) formed by guanine-rich sequences can trigger the formation of liquid- or solid-like condensates that are involved in many aberrant phase transitions. However, exactly how rG4 motifs modulate different phase transitions and impart distinct material properties to condensates is unclear. Here, using RNA oligonucleotides and cationic peptides as model systems, we show that RNA-peptide condensates exhibit tunability in material properties over a wide spectrum via interactions arising from rG4 folding/unfolding kinetics. rG4-containing oligonucleotides formed strong pairwise attraction with peptides and tended to form solid-like condensates, while their less-structured non-G4 mutants formed liquid-like droplets. We find that the coupling between rG4 dissociation and RNA-peptide complex coacervation triggers solid-to-liquid transition of condensates prior to the complete unfolding of rG4s. This coupling points to a mechanism that material states of rG4-modulated condensates can be finely tuned from solid-like to liquid-like by the addition of less-structured RNA oligonucleotides, which have weak but dominant binding with peptides. We further show that the tunable material states of condensates can enhance RNA aptamer compartmentalization and RNA cleavage reactions. Our results suggest that condensates with complex properties can emerge from subtle changes in RNA oligonucleotides, contributing ways to treat dysfunctional condensates in diseases and insights into prebiotic compartmentalization.


Assuntos
Aptâmeros de Nucleotídeos , Quadruplex G , RNA/química , Aptâmeros de Nucleotídeos/química , Guanina
20.
Lab Chip ; 23(4): 580-590, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36644992

RESUMO

Cold atmospheric plasma treatment promises a targeted cancer therapy due to its selectivity and specificity in killing tumor cells. However, the current plasma exposure devices produce diverse and coupled reactive species, impeding the investigation of the underlying plasma-anticancer mechanisms. Also, the limited mono-sample and mono-dosage treatment modality result in tedious and manual experimental tasks. Here, we propose a cold atmospheric plasma chip producing targeted species, delivering multiple dosages, and treating multiple cell lines in a single treatment. Three modules are integrated into the chip. The environment control module and multi-inlet gas-feed module coordinately ignite component-tunable and uniformly distributed plasma. The multi-sample holding module enables multiplex treatment: multi-sample and -dosage treatment with single radiation. By exposing the HepG2 cell line to nitrogen-feed plasmas, we prove the crucial role of nitrogen-based species in inhibiting cell growth and stimulating apoptosis. By loading four-type cell lines on our chip, we can identify the most vulnerable cell line for plasma oncotherapy. Simultaneously, three-level treatment dosages are imposed on the cells with single radiation to optimize the applicable treatment dosage for plasma oncotherapy. Our chip will broaden the design principles of plasma exposure devices, potentially help clarify plasma-induced anticancer mechanisms, and guide the clinical application of plasma-based oncotherapy.


Assuntos
Gases em Plasma , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico , Apoptose , Linhagem Celular , Resultado do Tratamento , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...